4 research outputs found

    VERITE: A Robust Benchmark for Multimodal Misinformation Detection Accounting for Unimodal Bias

    Full text link
    Multimedia content has become ubiquitous on social media platforms, leading to the rise of multimodal misinformation (MM) and the urgent need for effective strategies to detect and prevent its spread. In recent years, the challenge of multimodal misinformation detection (MMD) has garnered significant attention by researchers and has mainly involved the creation of annotated, weakly annotated, or synthetically generated training datasets, along with the development of various deep learning MMD models. However, the problem of unimodal bias in MMD benchmarks -- where biased or unimodal methods outperform their multimodal counterparts on an inherently multimodal task -- has been overlooked. In this study, we systematically investigate and identify the presence of unimodal bias in widely-used MMD benchmarks (VMU-Twitter, COSMOS), raising concerns about their suitability for reliable evaluation. To address this issue, we introduce the "VERification of Image-TExtpairs" (VERITE) benchmark for MMD which incorporates real-world data, excludes "asymmetric multimodal misinformation" and utilizes "modality balancing". We conduct an extensive comparative study with a Transformer-based architecture that shows the ability of VERITE to effectively address unimodal bias, rendering it a robust evaluation framework for MMD. Furthermore, we introduce a new method -- termed Crossmodal HArd Synthetic MisAlignment (CHASMA) -- for generating realistic synthetic training data that preserve crossmodal relations between legitimate images and false human-written captions. By leveraging CHASMA in the training process, we observe consistent and notable improvements in predictive performance on VERITE; with a 9.2% increase in accuracy. We release our code at: https://github.com/stevejpapad/image-text-verificatio

    Patients with pelvic fractures due to falls: A paradigm that contributed to autopsy-based audit of trauma in Greece

    Get PDF

    VICTOR: Visual Incompatibility Detection with Transformers and Fashion-specific contrastive pre-training

    No full text
    In order to consider fashion outfits as aesthetically pleasing, the garments that constitute them need to be compatible in terms of visual aspects, such as style, category and color. With the advent and omnipresence of computer vision deep learning models, increased interest has also emerged for the task of visual compatibility detection with the aim to develop quality fashion outfit recommendation systems. Previous works have defined visual compatibility as a binary classification task with items in a garment being considered as fully compatible or fully incompatible. However, this is not applicable to Outfit Maker applications where users create their own outfits and need to know which specific items may be incompatible with the rest of the outfit. To address this, we propose the Visual InCompatibility TransfORmer (VICTOR) that is optimized for two tasks: 1) overall compatibility as regression and 2) the detection of mismatching items. Unlike previous works that either rely on feature extraction from ImageNet-pretrained models or by end-to-end fine tuning, we utilize fashion-specific contrastive language-image pre-training for fine tuning computer vision neural networks on fashion imagery. Moreover, we build upon the Polyvore outfit benchmark to generate partially mismatching outfits, creating a new dataset termed Polyvore-MISFITs, that is used to train VICTOR. A series of ablation and comparative analyses show that the proposed architecture can compete and even surpass the current state-of-the-art on Polyvore datasets while reducing the instance-wise floating operations by 88%, striking a balance between high performance and efficiency
    corecore